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Abstract. Although there is wide agreement that backfilling produces
significant benefits in scheduling of parallel jobs, there is no clear con-
sensus on which backfilling strategy is preferable - should conservative
backfilling be used or the more aggressive EASY backfilling scheme. Us-
ing trace-based simulation, we show that if performance is viewed within
various job categories based on their width (processor request size) and
length (job duration), some consistent trends may be observed. Using in-
sights gleaned by the characterization, we develop a selective reservation
strategy for backfill scheduling. We demonstrate that the new scheme is
better than both conservative and aggressive backfilling. We also consider
the issue of fairness in job scheduling and develop a new quantitative ap-
proach to its characterization. We show that the newly proposed schemes
are also comparable or better than aggressive backfilling with respect to
the fairness criterion.

1 Introduction

Effective job scheduling schemes are important for supercomputer centers in or-
der to improve system metrics like utilization, and user metrics like slowdown
and turn around time. It is widely accepted that the use of backfilling in job
scheduling results in significant improvement to system utilization over non-
backfilling scheduling approaches [8]. However, when comparing different back-
filling strategies, many studies have concluded that the relative effectiveness of
different schemes depends on the job mix [10], [12]. The two main variants are
conservative backfilling [6] and aggressive (EASY) [6], [13] backfilling. With con-
servative backfilling, each job is given a reservation when it arrives in the queue,
and jobs are allowed to move ahead in the queue as long as they do not cause
any queued job to get delayed beyond its reserved start-time. With aggressive
backfilling, only the job at the head of the queue is given a reservation. Jobs are
allowed to move ahead of the reserved job as long as they do not delay that job.
There is no consensus on which of these two backfilling schemes is better.

In order to gain greater insight into the relative effectiveness of conservative
and aggressive backfilling, we group jobs into categories and study their effect on
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jobs in the different categories. Two important factors that affect the scheduling
of a job are the length (run time of the job) and width (number of nodes requested
by the job). By classifying jobs along these dimensions, and interpreting metrics
like slowdown for various job categories instead of just a single average for the
entire job trace, we are able to obtain new insights into the performance of
conservative and EASY backfilling. We show that very consistent trends are
observed with four different traces from Feitelson’s archive [4].

We observe that conservative and aggressive backfilling each benefit certain
job categories while adversely affecting other categories. Conservative backfilling
allows less backfilling than aggressive backfilling due to the constraints on the
schedule by the reservations of all waiting jobs. Although aggressive backfilling
enables many more jobs to be backfilled, those jobs (e.g. wide jobs) that do not
easily backfill suffer since they might have to wait till they get to the head of
the queue before they get a reservation.

We propose a selective reservation scheme intended to obtain the best char-
acteristics from both strategies while avoiding the drawbacks. The main idea is
to provide reservations selectively, only to jobs that have waited long enough in
the queue. By limiting the number of reservations, the amount of backfilling is
greater than conservative backfilling; but by assuring reservations to jobs after
a limited wait, the disadvantage of potentially unbounded delay with aggressive
backfill is avoided. We show that the new strategy is quite consistently superior
to both conservative and aggressive backfilling.

Finally, we address the issue of fairness in job scheduling. We propose a new
model for quantitative characterization of fairness in job scheduling and show
that the new schemes are comparable or better than aggressive backfilling.

The paper is organized as follows. In Section 2, we provide some background
information pertinent to this paper. Section 3 addresses the comparison of con-
servative and aggressive backfilling. The new selective backfilling schemes are
presented and evaluated in Section 4. In Section 5, we develop a new model for
characterizing the fairness of a job scheduling scheme. Related work is presented
in Section 6. Concluding remarks are provided in Section 7.

2 Background

Scheduling of parallel jobs is usually viewed in terms of a 2D chart with time
along one axis and the number of processors along the other axis. Each job can be
thought of as a rectangle whose length is the user estimated run time and width is
the number of processors required. Parallel job scheduling strategies have been
widely studied in the past [1], [2], [3], [9], [15]. The simplest way to schedule
jobs is to use the First-Come-First-Served (FCFS) policy. This approach suffers
from low system utilization. Backfilling [11], [12], [16] was proposed to improve
system utilization and has been implemented in several production schedulers
[7] . Backfilling works by identifying “holes” in the 2D chart and moving forward
smaller jobs that fit those holes. There are two common variants to backfilling -
conservative and aggressive (EASY)[12], [13]. With conservative backfill, every



job is given a reservation when it enters the system. A smaller job is moved
forward in the queue as long as it does not delay any previously queued job. With
aggressive backfilling, only the job at the head of the queue has a reservation. A
small job is allowed to leap forward as long as it does not delay the job at the
head of the queue.

Some of the common metrics used to evaluate the performance of scheduling
schemes are the average turnaround time and the average bounded slowdown.
We use these metrics for our studies. The bounded slowdown [6] of a job is
defined as follows:

Bounded Slowdown = (Wait time + Max(Run time, 10))/ Max(Run time,
10)

A threshold of 10 seconds is used to limit the influence of very short jobs
(which usually are due to aborted jobs) on the metric.

2.1 Workload Characterization

The simulation studies were performed using a locally developed simulator with
workload logs from several supercomputer centers. From the collection of work-
load logs available from Feitelson’s archive [4], the CTC workload trace, the
SDSC workload trace, the KTH workload trace and the LANL workload trace
were used to evaluate the various schemes. The CTC trace was logged from a
430 node IBM SP2 at the Cornell Theory Center, the KTH trace from a 100
node IBM SP2 system at the Swedish Royal Institute of Technology, the SDSC
trace from a 128 node IBM SP2 system at the San Diego Supercomputer Center,
and the LANL trace from a 1024 node CM-5 system at the Los Alamos National
Laboratory.

Table 1. Job categorization criteria - CTC, KTH and SDSC traces

<8 Processors|>8 Processors
<1Hr SN SW
>1Hr LN LW

Table 2. Job categorization criteria - LANL trace

<64 Processors|>64 Processors
<1Hr SN SW
>1Hr LN LW

Any analysis that is based on the aggregate slowdown of the system as a
whole alone does not provide insights into the variability within different job
categories. Therefore in our discussion, we classify the jobs into various categories



Table 3. Job distribution by category

Trace| SN SW LN LW

CTC |45.06%|11.84%30.26%12.84%
KTH (53.78%19.52%|16.50%10.20%
SDSC |47.24%|21.44%20.94%|10.38%
LANL|70.80%|11.72%| 9.42% | 8.06%

based on the run time and the number of processors requested, and analyze the
average slowdown and turnaround time for each category. In the initial part
of the study we compare the performance of the different schemes under the
idealistic assumption of accurate user estimates. In later sections, we present
the results using the actual user estimates from the workload logs.

To analyze the performance of jobs of different sizes and lengths, jobs were
grouped into 4 categories: based on their run time - Short(S) vs. Long(L); and
the number of processors requested - Narrow(N) vs. Wide(W). The criterion
used for job classification for the CTC, SDSC and KTH traces are shown in
Table 1. For the LANL trace, since no job requested less than 32 processors, the
classification criterion shown in Table 2 was used. The distribution of jobs in the
various traces, corresponding to the four categories is given in Table 3.

The choice of the partition boundaries for the categories is somewhat arbi-
trary; however, we show in the next section that the categorization permits us
to observe some consistent trends that are not apparent when only the overall
averages for the entire trace are computed. We find that the same overall trends
are observed if the partition boundaries are changed.

3 Conservative versus EASY backfilling

Previous studies [10], [12] have concluded that the relative performance of EASY
and conservative backfill policies is trace and metric dependent and that no
consistent trend can be observed. However on finer categorization of the jobs in
a trace, consistent category-wise trends become evident under the assumption
of exact user run time estimates using FCFS priority.

With conservative backfilling, when a job is submitted, it is given a reserva-
tion to start at the earliest time that does not violate any previously existing
reservations. The existing reservations constrain later arriving jobs from backfill-
ing easily. The longer the job is, the more difficult it is for it to get a reservation
ahead of the previously arrived jobs. Therefore long jobs find it difficult to back-
fill under conservative backfilling. EASY backfilling relaxes this constraint, by
maintaining only one reservation at any point of time. The presence of only one
“blocking” reservation in the schedule helps long jobs to backfill more easily.

Wide jobs find it difficult to backfill because they cannot find enough free
processors easily. Conservative backfill helps such wide jobs by guaranteeing
them a start time when they enter the system. In EASY backfill, since these
jobs are not given a reservation until they reach the head of the idle queue, even



jobs having lower priority than these can backfill ahead of them, if they find
enough free processors.

Thus the jobs in the Long Narrow (LN) category benefit from EASY back-
filling, while the jobs in the Short Wide (SW) category benefit from conservative
backfilling. As far as the Short Narrow (SN) jobs are concerned, there is no con-
sistent trend between EASY and conservative because these jobs backfill very
quickly in both the schemes. Similarly, for the Long Wide (LW) jobs, there is
no clear advantage in one scheme over the other because conservative backfilling
provides these with the advantage of reservations, while EASY backfilling pro-
vides these with better backfilling opportunities due to fewer “blockades” in the
schedule. Thus the overall performance of EASY versus conservative backfilling
will depend on the relative mix of the jobs in each of the categories. Fig. 1 com-
pares the slowdowns and turnaround times of jobs in the different categories, for
EASY and conservative backfilling, for the four traces. The average slowdown
and turnaround time for EASY backfilling are shown, as a percentage change
compared to the corresponding average for the same set of jobs under conser-
vative backfill scheduling. For example, if the average slowdown of jobs in the
SW category were 8.0 for conservative backfill and 12.0 for EASY backfill, the
bar in the graph would show +50%. Therefore negative values indicate better
performance. The figures indicate that the above mentioned trends are observed
irrespective of the job trace used and the metric used. Fig. 2 shows a comparison
of the two schemes for the CTC trace under high system load (obtained by mul-
tiplying each job’s run time by a factor of 1.3). We find that the same trends are
observed and that differences between the schemes are more pronounced under
high load.

The data above highlights the strengths and weaknesses of the two backfilling
schemes:

— Conservative backfilling provides reservations to all jobs at arrival time and
thus limits the slowdown of jobs that would otherwise have difficulty getting
started via backfilling. But it is indiscriminate and provides reservations to
all jobs, whether they truly need it or not. By providing reservations to
all jobs, the opportunities for backfilling are decreased, due to the blocking
effect of the reserved jobs in the schedule.

— EASY backfilling provides a reservation to only the job at the head of the
job queue. Thus it provides much more opportunity for backfilling. However,
jobs that inherently have difficulty backfilling (e.g. wide jobs) suffer relative
to conservative backfilling, because they only get a reservation when they
manage to get to the head of the queue.

4 Proposed Schemes

4.1 Selective Reservation Schemes

Instead of the non-selective nature of reservations with both conservative and
aggressive backfilling, we propose a selective backfilling strategy: jobs do not get
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Fig. 1. Category-wise performance comparison of conservative vs. EASY backfilling:
normal load. The SW jobs have better slowdowns under conservative backfilling while
the LN jobs have better slowdowns under EASY backfilling. This trend is consistent
across different traces
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Fig. 2. Comparison of conservative and EASY backfilling: high load. The trends for
the SW and the LN jobs are more pronounced under high load compared to normal
load

reservation until their expected slowdown exceeds some threshold, whereupon
they get a reservation. By doing so, if the threshold is chosen judiciously, few
jobs should have reservations at any time, but the most needy of jobs are assured
of getting reservations.

It is convenient to describe the selective reservation approach in terms of two
queues with different scheduling policies - an entry “no-guarantee” queue where
start time guarantees are not provided and another “all-guaranteed” queue in
which all jobs are given a start time guarantee (similar to conservative backfill-
ing). Jobs enter the system through the entry queue which schedules jobs based
on FCFS priority without providing start time guarantees. If a job waits long
enough in the entry queue, it is transferred to the guaranteed queue. This is
done when the eXpansion Factor (XFactor) of the job exceeds some “starvation
threshold”.

The XFactor of a job is defined as: XFactor = (Wait time + Estimated Run
time) / Estimated Run time

An important issue is that of determination of a suitable starvation threshold.
We chose the starvation threshold to simply be the running average slowdown
of the previously completed jobs. This is referred to as the Selective-Adaptive or
Sel-Adaptive scheme.

In the Selective-Adaptive scheme, a single starvation threshold is used for
all job categories. Since different job categories have very different slowdowns,
another variant of selective reservations was evaluated, where different starvation
thresholds were used for different job categories, based again on the running
average slowdown of the previously completed jobs in each of these categories.
We call this the Selective-Differential-Adaptive or Sel-D-Adaptive scheme. In
both the schemes the thresholds are initialized to zero and as jobs complete the
running average is updated appropriately. Since different thresholds are used
for different job categories, the Selective-D-Adaptive scheme can also be used to
tune specific job categories by appropriately scaling the corresponding starvation
thresholds. In the rest of the paper Selective backfilling and Selective reservation
are used interchangeably.



4.2 Performance Evaluation
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Fig. 3. Performance of selective backfilling schemes: accurate user estimates. The se-
lective backfilling schemes achieve a significant reduction in the overall slowdown and
turnaround time. The selective schemes also improve the average and worst case slow-
downs of most categories

Fig. 3a compares the percentage change in the average slowdowns for the
EASY and Selective schemes, with respect to conservative backfilling under
high load. It can be observed that the Selective reservation scheme achieves
at least 45% reduction in the overall slowdown compared to conservative and
EASY backfilling. Further, it improves the slowdowns of all categories compared
to conservative backfilling except the LW category, for which there is a slight
degradation in slowdown. This degradation in the slowdown for the LW jobs is
explained as follows. The LW jobs have difficulty backfilling and hence rely on
reservations. Further, the average slowdown for the LW category tends to be
much less than the overall average slowdown. Use of the overall average slow-
down as the starvation threshold implies that LW jobs will not be moved to
the guarantee queue and given a reservation until their XFactor is significantly
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Fig. 4. Performance of the selective schemes for the various traces under different load
conditions: exact estimates. The selective reservation schemes outperform conservative
and EASY backfilling, especially at high load




higher than their group average. This causes a degradation in the slowdown for
the LW category.

The Selective-D scheme improves the performance of all the categories in-
cluding the LW category, although the magnitude of improvement for the SW
category is slightly lower than the Selective scheme.

Similar trends are observed when comparing the turnaround times as indi-
cated in Fig. 3b. From Fig. 3c it can be observed that the Selective-D scheme,
achieves dramatic reductions in the worst case slowdowns for all the categories
when compared to conservative and EASY backfilling.

Fig. 4 shows the performance of the Selective schemes compared to EASY
and conservative backfilling for the various traces under different load conditions.
The different loads correspond to modification of the traces by multiplying the
run times of the jobs by suitable constants, keeping their arrival time the same
as in the original trace. Higher values of the constant represent proportionately
higher offered load to the system, in terms of processor-time product. We observe
that the improvements obtained by the Selective reservation schemes are more
pronounced under high load.

4.3 User Estimate Inaccuracies

We have so far assumed that the user estimates of run time are perfect. Now,
we consider the effect of user estimate inaccuracy on the selective reservation
schemes. This is desirable from the point of view of realistic modeling of an
actual system workload, since a job scheduler only has user run time information
to make its scheduling decisions.

A clarification about these threshold values is in order. Real traces contain a
number of aborted jobs and jobs with poorly estimated run times. The slowdowns
of these jobs tend to be much larger than the slowdowns of similar well estimated
jobs. This is because the large degree of over-estimation of their run time makes
these jobs very hard to backfill. Instead of using the average slowdown of all jobs,
which tends to be skewed high due to the aborted or poorly estimated jobs, the
starvation threshold is computed from the average slowdown of only the well
estimated jobs (whose estimated run times are within a factor of two of their
actual run times).

Fig. ba shows the percentage change in the average slowdown for EASY back-
fill and the selective reservation schemes with respect to conservative backfill. It
can be observed from the figure that the selective schemes perform better than
conservative backfilling for all job categories. Similar trends can be observed with
respect to the average turnaround time from Fig. 5b. Fig. 5c shows the percent-
age change in the worst case slowdown of the various schemes as a percentage
change with respect to that of conservative backfilling.

Comparing the Selective-Adaptive schemes with EASY backfill, the improve-
ments are not as good as with exact run time estimates. The jobs with sig-
nificantly over-estimated run times do not get reservations easily (since their
XFactors increase at a slower rate compared to an accurately estimated job of
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Fig. 5. Performance of selective backfill schemes: actual user estimates. The selective
schemes achieve a significant improvement in the average slowdown and turnaround
time of all the categories compared to conservative backfilling




the same length) and also cannot backfill easily owing to their seemingly large
length. Therefore these jobs tend to incur higher slowdowns with the Selective-
Adaptive schemes than under EASY backfill, which provides greater opportu-
nities for these jobs to backfill (because there is no more than one impeding
reservation).

In Fig. 6, we show performance of well-estimated jobs (those with estimated
run time within a factor of two of the actual run time). The percentage change
in the average slowdown and turnaround time and the worst case slowdown
are shown for EASY backfill and the selective reservation schemes, relative to
conservative backfill. For well-estimated jobs, the performance trends for the
various categories are quite similar to the case of exact run time estimates -
the selective schemes are significantly better than conservative backfill, and also
better than EASY backfill for most of the cases.
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Fig. 6. Performance of selective backfill schemes: well-estimated jobs

Fig. 7 shows the performance of the Selective schemes compared to EASY and
conservative backfilling for the SDSC, CTC and KTH traces under different load
conditions. The LANL trace did not contain user run time estimates. We again



observe that the improvements obtained by the Selective reservation schemes

are more pronounced under high load.
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Fig. 7. Performance of the selective schemes for the various traces under different
load conditions: actual user estimates. The selective reservation schemes outperform
conservative and EASY backfilling, especially under high load

5 Fairness

Of great importance for production job scheduling is the issue of fairness. A
strict definition of fairness for job scheduling could be that no later arriving job
should be started before any earlier arriving job. Only an FCFS scheduling policy




without backfilling would be fair under this strict definition of fairness. Once
backfilling is allowed, clearly the strict definition of fairness will be violated. It
is well established that backfilling significantly improves system utilization and
average slowdown/turnaround-time; thus backfilling is virtually indispensable
for non-preemptive scheduling. If we consider FCFS with conservative backfilling
under a scenario of perfect estimation of job run times, a weaker definition of
fairness is satisfied: No job is started any later than the earliest time it could have
been started under the strictly fair FCFS-No-Backfill schedule. In other words,
although later arriving jobs may overtake queued jobs, it is not considered unfair
because they do not delay queued jobs.

Still considering the scenario of accurate user estimates of run time, how can
we evaluate if an alternative scheduling scheme is fair under the above weak
criterion? One possibility would be to compare the start time of each job with
its start time under the strictly fair FCFS-No-Backfill schedule. However, this
is unsatisfactory since the start times of most jobs under FCFS-No-Backfill will
likely be worse than FCFS-Conservative, due to the poorer utilization and higher
loss-of-capacity with FCFS-No-Backfill. What if we compared start times of each
job under the new schedule with the corresponding start time under FCFS-
Conservative? This has a problem too - those jobs that got backfilled and leaped
ahead under FCFS-Conservative would have a much earlier reference start time
than would be fair to compare against. To address this problem, we define a ”fair-
start” time with each job under a FCFS-Conservative schedule. It is defined
as the earliest possible start time the job would have received under FCFS-
Conservative if the scheduling strategy were suddenly changed to strict FCFS-
No-Backfill at the instant the job arrived. We then define a fair-slowdown of a
job as:

Fair-Slowdown = (Fair-Start time under FCFS-Conservative - Queue time +
Run time)/(Run time)

We can now quantify the fairness of a scheduling scheme by looking at the
percentage of jobs that have a higher slowdown than their fair slowdown. Table 4
shows the percentage of jobs in 5 different groups. The first column indicates the
percentage of jobs that have slowdown less than or equal to their fair slowdown
value. Column two, indicates the percentage of jobs that have slowdown between
1-1.5 times their fair slowdown value. Column three shows the percentage of jobs
that have slowdown between 1.5-2 times their fair slowdown value. Column four
indicates the percentage of jobs that have slowdown between 2-4 times their fair
slowdown value. Column five shows the percentage of jobs that have slowdown
greater than 4 times their fair slowdown value.

From the table, it can be observed that 92% of the jobs received fair treatment
under the Selective reservation schemes and the remaining 8% of the jobs had
worse slowdown than their fair slowdown and can be considered to have been
treated unfairly, relative to FCFS-Conservative. However, it may be observed
that the percentage of jobs that got unfair treatment under aggressive backfilling
schemes is higher. Compared to SJF-EASY backfilling, the Selective reservation
schemes are clearly more fair. But, the percentage of jobs that had slowdown



Table 4. Fairness comparison

<1 [1-1.5]1.5-2]2-4 | >4
FCFS EASY 90.46| 7.20 | 1.28 |0.76/0.30
FCFS Sel-Adaptive |92.64| 4.98 | 0.7 |1.04(0.54
FCFS Sel-D-Adaptive|92.18| 5.18 | 1.02 |0.88| 0.6
SJF EASY 91.08] 5.24 | 1.16 |1.18(1.34

greater than twice their fair slowdown value is slightly greater under the selective
reservation scheme when compared to FCFS-EASY backfilling.

A scheme that worsens the slowdowns of many jobs in the long categories
is not likely to be acceptable even if it improves the slowdowns of most of the
other categories. For example, a delay of 1 hour for a 10 minute job (slowdown
= 7) is much more tolerable than a slowdown of 7 (i.e. a one-week wait) for
a 24 hour job. In order to get insights into how different categories of jobs are
treated by the different schemes, we categorized the jobs based on their run time.
We compare the number of jobs that received unfair treatment in each of the
categories for the different schemes.
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Fig. 8. Fairness comparison of various schemes. The selective backfilling schemes are better
than or comparable to FCFS-EASY with respect to fairness

Fig. 8 shows a comparison of the fairness of the selective reservation schemes
with FCFS-EASY and SJF-EASY schemes. From the figure we observe that
under the Selective reservation schemes, all the jobs that have slowdowns greater
than four times their fair slowdown value are short jobs (run time less than or



equal to 4Hrs) and none of the very long jobs suffer a degradation greater than
two times their fair slowdown value. For most length categories, the number
of unfairly treated jobs is less with the selective reservation schemes than the
aggressive backfilling schemes. Overall, we can conclude that the new schemes
are better than or comparable to FCFS-EASY with respect to fairness. FCFS-
EASY is a widely used scheduling strategy in practice - thus the new selective
scheduling schemes would appear to be very attractive, since they have better
performance and comparable/better fairness properties.

The above model for fairness was based on the observation that FCFS-
Conservative satisfies a weak fairness property and therefore the fair-start time
of jobs under FCFS-Conservative can be used as a reference to compare the start-
times with other schedules. Of course, in practice user estimates of run time are
not accurate, and in this scenario, even the weak definition of fairness is not
satisfied by FCFS-Conservative schedules. Nevertheless, FCFS-Conservative is
considered completely acceptable as a scheduling scheme from the viewpoint of
fairness. Hence we believe it is appropriate to use it as a reference standard in
evaluating the fairness of other schedules in the practical scenario of inaccurate
user estimates of run time.

6 Related Work

The relative performance of EASY and conservative backfilling is compared in
[5] using different workload traces and metrics. A conclusion of the study is that
the relative performance of conservative and EASY backfilling depends on the
percentage of long serial jobs in the workload and the accuracy of user estimates.
It is observed that if user estimates are very accurate and the trace contains many
long serial jobs, then conservative backfilling degrades the performance of the
long serial jobs and enhances the performance of the larger short jobs. This is
consistent with our observations in this paper.

In [14], the effect of backfill policy and priority policy on different job cate-
gories was evaluated. A conclusion of the study is that when actual user estimates
are used, the average slowdown of the well estimated jobs decreases compared to
their average slowdown when all user estimates are accurate. Poorly estimated
jobs on the other hand, have worse slowdowns compared to when all user esti-
mates are accurate. This effect is more pronounced under conservative backfilling
compared to EASY.

Other studies that have sought approaches to improve on standard backfilling
include [9], [16]. In [16], an approach is developed where each job is associated
with a deadline (based on its priority) and a job is allowed to backfill provided
it does not delay any job in the queue by more than that job’s slack. Such an
approach provides greater flexibility to the scheduler compared to conservative
backfilling while still providing an upper bound on each job’s actual start time.
In [9], it is shown that systematically lengthening the estimated execution times
of all jobs results in improved performance of backfilling schedulers. Another
scheme evaluated via simulation in [9] is to sort the waiting queue by length



and provide no start-time guarantees. But this approach can result in very high
worst case delays and potentially lead to starvation of jobs.

7 Conclusions

In this paper we used trace-based simulation to characterize the relative perfor-
mance of conservative and aggressive backfilling. We showed that by examining
the performance within different job categories, some very consistent trends can
be observed across different job traces. We used the insights gleaned from the
characterization of conservative and aggressive backfilling to develop a new se-
lective backfilling approach. The new approach promises to be superior to both
aggressive and conservative backfilling. We also developed a new model for char-
acterizing the fairness of a scheduling scheme, and showed that the new schemes
perform comparably or better than aggressive backfilling schemes.
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